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Laminar ceramics in which alternating layers of material are
bonded together exhibit a threshold strength if one set of
layers has a compressive residual stress. The threshold
strength is substantial if thc mechanical properties of the
component ccramics are chosen wisely. Optimization of
the threshold strength for a system with homogeneous elas-
tic propertics in terms of the layer thicknesscs, fracture
toughness and residual stress is presented. The best result
is shown to be associated with the toughest material and
the highest residual stress, but the choice of a laminar sys-
tem exhibiting such features is limited to available cera-
mics. For each material system, the threshold strength is
further optimized by making the layers as thin as pos-
sible. The thinness achievable will be limited by the tech-
nological processes used to make the laminar ceramic and
by material stability. Given a laminar ceramic system with a
specitic compressive layer thickness, the threshold strength
is optimized by sclecting a ratio of tensile to compressive
layer thickness. If the system mechanical properties are
favorable, the optimized threshold strength can be compar-
able in magnitude or much larger than the compressive
residual stress.
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1 Introduction

Fred Lange has been involved in many exciting and impor-
tant developments in the field of ceramics and the senior
author of this paper is privileged to have been associated
with a few of his c¢fforts in this area. Fred’s infectious cn-
thusiasm for research on mechanical properties and process-
ing of ceramic materials is an attractive element of any in-
teraction with him, His deep and wide-ranging knowledge
of the field is a treasured resource for those of us who have
the honor of working with him. Fred’s skill of explaining
sophisticated phcnomena clearly in terms of simple ma-
lerials science, physics and chemistry makes the labor of
learning from him un easy task, even for thosc of us trained
only in solid mechanics. It is with admiration, friendship
and gratilude that we dedicate this paper to honor Fred
Lange’s 60th annivcrsary.

Recently, Fred has discovered that laminar ceramics can
be designed Lo provide a threshold strength below which
failure due to monotonic loading is impossible [1]. This
development is of far reaching importance sincc cngineers
will now be able to design ccramic components to be
completely rcliable. This contrasts to the current state of
the art where ceramic components exhibit a distribution

of strengths and some must be expected to fail at quite
low loads. Absent a proof test, this presents a situation in
which ceramics cannot be used in critical components
duc to lack of reliability. However, if a threshold strength
is a robust feature of a ceramic component, a design for
it can be developed that assures absolute reliability and
safety. This breakthrough in ceramic engineering will
have far reaching consequences in the application of these
brittle materials.

The laminar ceramic is designed to have alternating
layers of material as shown in Fig. 1, with compressive
laycrs sandwiched between tensile layers. The tensile load-
ing direction is parallcl to the layers so that the strength
controlling cracks are transverse to thc slabs as depicted
in Fig. 1. Sincc the layered ceramic is made from slabs
fused together, any flaw present at the outset is assumed
to be confined entirely within one layer. As in any brittle
composite material, this feature by itself has beneficial ef-
fects on the performance of the material since the strength
controlling cracks are limited in size by the scale of the
clements in the system, in this case the laycers. If a flaw
lies in the compressive layer, there is a lower bound to
thc applied tensile stress necessary to propagate the
crack. This phenomenon is completely analogous to the be-
havior of surface cracks in ceramics with compressive
layers on their perimeter {2 to 7]. However, the catastrophic
growth of cracks which are present initially in the tensile
layers is also absent below a threshold strength [1} and
so all cracks in the layered system are limited in their ten-
dency to propagate under applied stress.
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Fig. L. A laminar ceramic loaded paralicl to the intertaces between the
layers and having a through crack in a tensile layer which partially
penctrates the compressive layer. The scheme for calculating the stress
Intensity factor is suggested by the loads decompused into two contri-
butions.



It will be shown that the threshold stress for propagation
of the cracks in the (ensile layers is lower than that for pro-
pagation of cracks in the compressive layers. Since propa-
gation of cracks in the tensile layers can occur at lower ap-
plied stresses than those which will cause growth of cracks
in the compressive layers, the flaws in the tensile slabs
control the true threshold strength of the system. Rao
ct al. [1] have shown that this threshold strength depends
on the toughness of thc material in the compressive
layers, the thicknesses of the layers and the residual stress
in the compressive layer. [tis of interest to determine how to
choose these parameters to obtain Lhe largest possible
threshold strength for the Jaminar ceramic. Such an effort
is the subject of this paper.

2 Threshold Strength

A crack in the tensile layer will grow towards the compres-
sive layer when the stress intensity factor K due to the com-
bination of the applied and the tensile residual stress reaches
the fracture toughness of the material in the tensile layers.
Strength limiting flaws in the tensile slab are those that have
a length which is a substantial fraction of the layer thick-
ness. These cracks will grow at relatively low applied
stress, which we assume to be below the threshold strength
of the laminar system. When the tip of such a crack enters
the compressive layer, the growth into the compressive ma-
terial will stop before it grows all the way across. Instead, at
more or less the sume applied stress, the flaw will tunnel
down the length of the tensile layer to form a through crack
as depicted in Fig. 1 [8].

Further growth of the crack as depicted in Fig. 1 will take
place when the stress intensity factor K equals the toughncss
K. of the material in the compressive layer. Rao et al. [1]
have shown that the stress intensity factor for a laminar
system with isotropic components having the same elastic
properties is

K = 6, /7a | ac\/ﬁ[(hk;—;) % sin"(zt—za) - l} (1)

where g, is the applied stress, 2 is the crack length, g, is the
magnitude of the compressive residual stress in the layer of
thickness ¢} and £ is the thickness of the layer with tensile
residual stress. (It should be noted that this result is strictly
valid only if the different layers huve the same elastic prop-
crties.) It the stress intensity factor falls as the crack extends
in the compressive laycr, the flaw will grow stably as the
applied stress is increased until it reaches the next tensile
layer. By differentiating Eq. (1) with respect to a, setting
K equal to K and considering a crack which spans two com-
pressive layers and the tensile layer in-between, we find that
stable growth across the entire compressive layer occurs as
long as
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If this condition is met, Rao et al. [1] have shown that the
stress ay, to drive the crack all the way through the compres-
sive layer is

- (1 +%) -i- sin"‘(1 l%’*)} (3)

Since the flaw has rcached this length in a stable manner and
will propagate unstably beyond here, Eq. (3) is the estimate
of the threshold strength controlled by cracks initially in the
tensile layer, as long as the condition in Eq. (2) is met. This
situation docs not always prevail and a threshold strength
for cases violating Eq. (2) will be considered below.

Consider now flaws initially in the compressive laycrs,
Those with a diameter close (o the layer thickness will
propagalc first. Tunneling down the length of the compres-
sive layer and propagation into the tensile layers in an un-
stablc manner will occur more or less at the same applied
stress oqm, Which can be cstimated as
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Comparison of Eq. (3) and Eq. (4) shows that g, exceeds
ow so the latler is the true threshold strength of the laminar
ceramic, given that Eq. (2) is satislicd.
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3 Optimal Threshold Strength

The optimization of the threshold strength rcquires the
maximization of &y, with respect to the fracture tough-
ness, the layer thicknesses and the residual stress in the
compressive laycers. However, the residual stress and the
layer thicknesses are not independent, so we must make
use of the following result [1] for a laminar system in which
the different layers have the samc clastic properties:

—E’¢e

T — I (5)
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where £/ = E/(1 — v) is the biaxial elastic modulus, E is
Young’s modulus, v is Poisson’s ratio and ¢ is the differen-
lial strain between the compressive and the tensile layers.
The source of the dilferential strain can be thermal expan-
sion mismatch or a transformation strain, so no single for-
mula can be given to represent it. However, in the case of
thermal expansion mismatch,

&= (% —a))AT (6)

where « is the coefficicnt of thermal expansion of the ma-
terial in the compressive layer, «s is the coefficient of ther-
mal expansion of thc material in the tensile layer and AT'is
the current temperature minus the temperature at which the
layers are free of residual stress. Note that the thermal ex-
pansion coefficients are assumed to be independent of tem-
perature in this example and ¢ is a negative number.
Inspection of Eq. (3) together with Eq. (5) reveals that the
threshold strength is maximized by selecting the materials
that give the highest K, E’ and ¢. Selection is, of course,
limited to available combinations of materials and the
best choice to achieve the highest threshold strength can




be determined only by identifying the parameters of the
materials and evaluating Eq. (3). A useful methodology
for this would be to construct maps in the fashion of Ashby
[9] and identify the most promising combinations of ma-
terials by their position on the map. This activity will be
left to a future effort.

Unconstrained Optimization of the Layer Thickness Ratio

Alter a good combination of materials has been selected and
thus the values of K, E’ and ¢ have been identificd, the next
step s to choose the layer thicknesses. It makes sense to use
layers that are as thin as possible, since this will promotc the
first term on the right-hand side of Eq. (3). However, it is
convenient to consider first a choice of ¢ that is purely ar-
bitrary and then optimize the threshold strength in terms of
the ratio £,/t;. This situation would arise when the compres-
sive layer material is available only in sheets of a specific
thickness so that this dimension cannot be adjusted at will,
If the tensile layer material can be made to any thickness,
then optimization of the threshold strength can be achieved
by adjusting this dimension. The converse situation may
also arisc where the tensile layers are available only in
sheets of a specific thickness but the compressive laycr
thickness can be adjusted. The optimization of the thresh-
old strength in this situation is also an interesting problem,
but for brevity it will not be considered here.

Having identified for a laminar ccramic system the
values of K., E, ¢ and an arbitrary choice for 1, we con-
clude that only the ratio £,/t; remains as an independent
unknown variable for optimizing the threshold strength.
It follows that Eq. (3) subject to Eq. (5) should be differen-
tiated with respect to £,/t; at fixed K., £, € and #, and the
result set W zero to determine the value of £,/t) that opti-
mizes the threshold strength for a laminar system with uni-
form clastic properties. (The optimal threshold strength for
a laminar ceramic system with heterogeneous clastic prop-
erlics must await an exact result for that case equivalent to
Eq. (3).) The result for the system with uniform clastic prop-
ertics is

K

- (--cE")/mt /2

A second differentiation of Eq. (3) has been carried out to
check that this result does give a maximum for the threshold
strength.

As noted above, the formula in Eq. (3) for the threshold
strength is only valid if Eq. (2) is satisfied. Equation (2) can
be combined with Eqgs (5) and (7) to show that the optimi-
zation of the threshold strength being attempted can only be
carried out in the manner used to obtain Eq. (7) if
:—227r2/3—l=1.145 (8)

i
which requires that
K
— < 0.883 (9)
(—'EE') nty /2

The result in Eq. (7) has been evaluated numerically and
plotted in Fig. 2 subject to the validity limitations of Eqs
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Fig. 2. The layer thickness ratio which optimizes the threshold strength
when the thickness ¢, of the compressive layer has a fixed value. When
K. /(—eE")\/(rt)2) is greater than unity, the layer thicknesses for
optimal threshold strength are chosen to be equal and as small as is
practically possible, as indicated by the dashed line.

(8) and (9). The line in Fig. 2 has been marked according
to Eq. (9). It can be seen that the ratio £/ is a few times
larger than unity when the loughness is low, the residual
stress is high or the compressive layer thickness is large.
In this situation, the residual stress contribution in Eg.
(3) is dominant and so optimizing that is important. This
Icads o the tensile layer thickness being a few times larger
than the compressive layer thickness to give the best result.
On the other hand, when the toughness is high, the residual
stress is small or the compressive layer is thin, the toughness
contribution in Eq. (3) is dominant and the highest threshold
strength is achieved by making the tensile layer as thin as
possible. As the toughness rises, the residual stress falls
or the compressive layer thickness falls, there is a gradual
transition from the case in which the residual stress domi-
nates in Eq. (3) to the one in which the toughness term
dominates. Following this trend, the layer thickness ratio
t/t; for optimal threshold strength gradually falls from
2.5 to just above unity, at which stage the limitations of
Eqs (8) and (9) are reached.

For the cases where the optimal threshold strength can be
achieved with the unconstrained value of £/, predicted in
Eq. (7), the predicted optimal threshold strength has been
calculated numerically from Eq. (3) and plotted in Fig. 3,
marked according to the limitation in Eq. (9). It can be
seen that when the toughness is low, the residual stress is
high or the compressive layers are thick (i.e. the residual
stress dominates the threshold strength predicted in Eg.

(3)), the threshold strength is somewhat less than the effec-

tive residual stress, — ¢E’. However, as the toughness rises,
the residual stress falls or the compressive layers become
thinner, the ratio of the threshold strength to the effective
residual stress rises. This takes place as the transition oc-
curs in Eq. (3) from the residual stress dominating the
threshold stress prediction to the toughness doing so.

To obtain an optimal threshold strength for regimes vio-
lating Eq. (9), a different formulation must be developed. In
this casc, it must be recognized that unstable crack growth
occurs before the crack has penetrated all the way through
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Fig. 3. The optimal threshold strength of a laminar ceramic. The thick-
ness 1, of the compressive layer should be chosen to be as small as
possible and that of the tensile layer, r), sclected according lo
Fig. 2. The threshold strength is then given by the full line when
K./(—¢£')\/(n1/2) is smaller than 0.883 and by the dashed line
when K./(—tE")\/(nt, [2) is greater than unily. The dashed line is
also the non-optimized threshold strengih for any laminar system
with homogeneous elastic propertics when the compressive and tensile
layers have the same thickness, but that thickness is arbitrary, Also
shown are threshold strengths calculated for cracks in compressive
layers. These lie above the equivalent results for cracks in tensile
layers, contirming that the lattcr control the true threshold strength
in laminar ceramics.

the compressive layer. A full treatment of the resulting
optimization problem is rather involved and will not be
attempted. However, for completeness, the threshold
strength for cases violating Eq. (2) will be developed to
augment the result for situations conforming to Eq. (2)
already given by Rao et al. [1].

4 Threshold Strength for High Toughness
Laminar Ceramics

When Eq. (2) is not met by a laminar ceramic, failure of the
cracks initially in the tensile layers occurs by unstable
propagation before they penctrate all the way through the
compressive layers. The instability is associated with a
minimum in the stress intcnsity factor as the crack propa-
gates through the compressive layer. Aftcr the minimum is
encountered, the stress intensity factor will begin to risc as
the crack grows at fixed applied stress. This will cause un-
stable growth of the crack and therefore failure of the Jami-
nar ceramic.
The derivative of Eq. (1) subject to Eq. (5} gives

K _ 1 |t ﬁ_zh/"z (10)
da  2a n \/I— (12/4a2)

Instability occurs with this equal to zero while K = K, and
the crack half-length meeting this will be designated .. It
follows that the crack length 2a. at instability satisfies

2a('/r2 . HK,. (l !)
(4a2/3) =1 4(—¢E") \/nt,)2

The threshold strength is then given by

o _ K V2. (6
(~eE) ~ el)yma 14i 7 " \2a) (12

Eq. (11) can in fact be solved for 2a./1, as a quadratic cqua-
tion and the result then inserted into Eq. (12). However, the
consequent expressions are tedious and not particularly il-
luminating, This procedure would however yield the ex-
pressions required for the unconstrained optimization of
the threshold strength at fixed 1, beyond the limitations im-
posed by Eqs (8) and (9). The procedure nceded to carry out
this optimization is rather messy and yields only modest
amounts of information compared with the effort involved.

5 Threshold Strength for Laminar Ceramics with
Layers of Equal Thickness

A little more insight is gained by addressing the case where
ty = to. In this situation, Eqs (11) and (12) are valid for
I < 2ac/ty <3 and thus for K./(—e£’)\/(nr, /2) > 0.780.
When the latter condition is not met. Eqs (3) and (5) are
used to obtain the threshold strength when £y = 1,. There-

fore, for K. /(—¢E")\/(nt, /2) < 0.780, the threshold strength
when 7 = 1, is given by

Oth K.

(—8E')%0'284+W (13)

All the results for the threshold strength when #; = t, have
been computed numerically and the result plotted in Fig. 3
as the dotted linc marked “Result for t; = ¢,”.

6 Optimal Threshold Strength for Laminar Ceramics
with Minimal Layer Thickness

Inspection of Eq. (3) shows that it is possible to increase
the threshold strength as much as possible by making the
thicknesses of the laycrs as small as feasible. The question
of how thin the layers can be madc is a technological
matter concerning the processing of the laminar ceram-
ics. Whether slip casting, solid state sintering, colloidal pro-
cessing or other methods are used, the process involved will
have a lower limit on the layer thickness that can be
achieved. This constraint determines the possible values
of 1, and . We will assumc that the lower limits on
both ¢, and r, arc identical.

Consideration of Eqs (3) and (5) indicates that the term
on the right-hand side of Eq. (3) containing the toughness is
made as large as possible by using both #; and 1, al their
smallest possible values, which implics that £, /1, is equal
to 1. On the other hand, the term on the right-hand side
of Eq. (3) containing the residual stress is made as large
as possible when 1,/t) is cqual to approximately 2.8; i.e.
greater than 1. Therefore, as the toughness increases or
the residual stress falls, the value of ¢, /1) giving the optimal
threshold strength will gradually cvolve from approxi-
mately 2.8 to unity. This means that £ /¢, for optimal thresh-
old strength is always greater than or equal to unity and
values of £3/t; < 1 need never be considercd. The strategy
for optimizing the threshold strength is therefore to selcct )
at its minimal practical value and then vary ,/t; to max-
imize the threshold strength, subject to 7, /1; > 1. This pro-
cedure is identical to that used for unconstrained optimiza-




tion at a fixed value of ¢/, cxcept that now the constraint
2/t > 1 must be invoked where appropriatc. As a conse-
quence, the optimal results plotted in Figs 2 and 3 with
ta/ty > 1.145 (i.e. for K. /(e')\/mt; /2) < 0.883) are still
valid but now with the interpretation that £, is chosen to be at
its smallest possible value rather than some arbitrary level.

The optimal threshold strength for the range in which
1 < 1p/ty < 1.145 requires usc ol the results for systems
in which unstable crack propagation occurs beforc the
tflaw has penetrated all the way through the compressive
layer, i.e. Eqs (11) and (12). As noted above, the optimiza-
tion of these results involves some messy calculus and has
not been attempted. In any case, the usefulness of these
results is limited since they would fill only a small gap
in the results. Glossing over this omission, we turn to the
case where 1, — t; which will prevail in the optimal situa-
tion for high values of K. /(—&L')\/(rt,/2), given that ¢,
has been chosen at its smallest practical value. The choice
of layer thickness ratio yielding thc optimal threshold
strength thus can be deduced from Fig. 2 by combining
the predictions of the optimal result for K /(-¢E’)
V(rt/2) < 0.883 (plotted as the full line) with £ =1,
for values of K./(—eL’)\/{n1;/2) above unity (plotted
as a dashed linc). In the segment where there is a gap be-
tween the lines in Fig. 2 represcnting these two results, an
interpolation can he used to move smoothly from one to the
other.

Since we have already dealt with the optimal threshold
strength when K./(—&E’)\/(nt;/2) < 0.883, we are only
concerned with situations other than this when the optimal
strength is associated with £, = f. The results of the pre-
vious section show that the threshold strength in this re-
gime is given by Eq.(12) with #, =1, subject to
Eq. (11). Differentiation of Eg.(12) with respect to f,,
while « is defined by Eq. (11) as a function of ¢, shows
that the threshold strength is made optimal in this situation
by choosing the laycer thicknesses to be as small as practi-
cally possible. (This step is laborious and the result is not
surprising, so we do not present the details. However, it
shows that ceteris paribus, the threshold strength increases
monotonically Lo infinity as t, approaches zero. Simulta-
neously, 2a. approaches t from above, showing that
when the layers are very thin, instability of the crack
growth occurs when the flaw has barely penetrated the com-
pressive layer.) The important result from this consideration
is that when K./(—+E')+/(mt,/2) is somewhat larger than
unity, the optimal threshold strength is obtained by making
the compressive und the tensile layer thicknesses equal and
as small as is practically possible. The optimal threshold
strength for K./(—¢E')/(mt;/2) somewhat greater than
unity is then given by the result for 1, = ¢ plotted in
Fig. 3 as a dashed line, but with the implication that r,
has been chosen to be its smallest practical value.

The optimal threshold strength for any valuc of K./
(- ¢E")\/(m1,/2) when t; has been chosen as its smallest
practical value thus can be obtained by using the optimal
result for the range K./(—¢E’)+/(nt,/2) < 0.883 (plotied
as the full line in Fig.3) combined with the result for
t2/1y (plotted us a dashed line in Fig. 3) used when K/
(—e¢E")/(nr,/2) is greater than unity. The gap between
K./(—&L')\/(nt,/2) equals to 0.883 K./(—e£')\/(rt)/2)
somewhat greater than unily can be handled by inter-
polation. Figurc 3 makes clear that little interpolation is

nceded since the two results are almost cqual at K./
(~eE")\/(mt1,/2) = 0.883.

We have also plotted in Fig. 3 the threshold implied by
cracks initially in the compressive layers. These results arc
calculated from Eq. (4) with Eq. (5) used to calculate the
compressive residual stress. The relevant lines arc marked
“Cracks in compressive layers.” Onc result is obtained by
using the optimized layer ratio from Fig. 2 in the range
K./(-¢E")\/(mt;/2) < 0.883 and is marked “t; # 12" in
Fig. 3. It cun be seen that this prediction lies abovc the op-
timal result for cracks in tensile layers, confirming that the
latter is the true threshold as mentioned previously. Another
result is obtained for cracks in compressive layers of lami-
nar ccramics with equal layer thicknesses and is marked
“t1 = t,”" in Fig. 3. T'his lallcr case is obtained for the entire
range of Fig. 3 and it can be seen that it lics above the result
for cracks in tensile layers of materials with equal layer
thicknesses. This observation confirms the latter result as
the true threshold in all laminar ceramics with layers of
equal thickness.

7 Discussion

As an example, we consider the casce of partially stabilized
zirconia sandwiched between layers of unstabilized zirconia
which have been bonded together at high temperature and
then cooled down below the transformation from tetragonal
to monoclinic for the unstabilized material [10]. The stabi-
lized zirconia will not transform, so a volume ditterence of
approximately 3% will cxist between the two different
layers [10]. This implies that & equals —1 %. All relevant
mechanical properties of the system are homogeneous,
which means that our optimal results are valid. Young's
modulus of zirconia is 200 GPa and Poisson’s ratio is
approximately 0.2. Consequently, E’ is approximately
250 GPa. The toughness of the compressive layer (the un-
stabilized zirconia) is taken to be 3 MPa,/m. Say, the layers
can be madc down to a thickness of 5 pum, which is perhaps
ambitious. The parameter K./(—&E’)\/(nt;/2) is then
equal to 0.43. Figure 2 shows that for optimal threshold
strength, the tensile layers ol stabilized zirconia should
be made approximately 70 % thicker than the compressive
layers of unstabilized zirconia. Figure 3 indicates that the
optimal threshold strength is approximately half of the
effective residual stress, which is 2.5 GPa. Therefore, the
optimal threshold strength is a very respectable 1.25 GPa.
If the layers can _only be made as thin as 50 pum,
K./(—cE’)\/(mt;/2) is approximately 0.14. From Fig. 2,
a tensilc laycr thickness of about 2.2 times the compressive
layer thickness is indicated. Figure 3 shows that the optimal
threshold strength is about 40 % of the effective residual
stress, or 1 GPa. Say the zirconia is present in a composite
at 15% by volume in another ceramic having the same
Young's modulus. The valuc of ¢ is then approximately
—0.15%. With a compressive layer thickness of S pum,
K./(—eL')\/(nt,/2) is equal to 2.9. As indicated in
Fig. 2, equal layer thicknesscs urc called for to obtain the
optimal threshold strength. Figure 3 shows that the optimal
threshold strength is approximatcly 2.5 times the effective
residual stress, which is now 0.375 GPa. As a result, the
optimal threshold strength is 0.94 GPa.

It should be noted that the threshold strengths discussed
here depend on the mechanism of failure. It has been ob-



served [10] that the cracks in the tensile layers sometimes
bifurcate and run parallel to the interfaces rather than grow-
ing into the neighboring compressive layer. Presumably this
occurs at an applicd stress below the threshold predicted for
cracks which do penetrate the compressive layer, but the
threshold strength measured in the bifurcating cases is little
different from that observed otherwise. A satisfactory mod-
cl has not yet been developed tor the bifurcating cracks, so
an optimal threshold strength for this situation cannot yet be
predicted. However, it seems clear that a threshold strength
of significant magnitude does exist in this case. Apart from
this qualification, the model of optimal threshold strength
presented in this paper indicates the scale of strength pos-
sible from the approach of layering compressive and tensile
slabs together. From the example just presented, it can be
seen that the strengths can be quite significant.

8 The New Millenium

As requested by the editor of this special edition of Zeit-
schrift fiir Metallkunde, Professor Dr. Manfred Riihle, we
present a few thoughts on the topic of our paper concerning
its development in the next millenium. In our case, this is a
particularly easy task, since it seems to us that Fred Lange’s
discovery of the phenomenon of a threshold sirength in
laminar ceramics will revolutionize the use of ceramics
in structural applications and other situations where a reli-
able strength is required. The task for researchers is to de-
velop this opportunity and identify and obviate the pitfalls,
problems and limitations which will undoubtedly present
difficulties in the implemention of this approach for devel-
oping strong cceramics. For example, damage induced dur-
ing processing in systems with very thin layers will prob-
ably causc cracks that span several slabs of the material.
This does not obviate the advantages of the laminar ceram-
ic approach, but rather limits the effectiveness of using very
thin layers. However, this scenario can be explored experi-
mentally and theoretically and the extent to which it under-

lines the value of Fred’s discovery investigated. In addition,
ccramicists adept at processing will undoubtedly be able to
improve the quality of the laminar systems which can be
produced, including the tendency for large processing
flaws to be introduced.

A more positive note is that Fred's pioneering work will
lead undoubtedly to follow-up developments. Rescarchers
will exploit his basic idea to endow ceramics with robust
threshold strengths against failurc mechanisms other thun
those involved in laminar ceramics loaded parallel to the
interfaces.
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